For these models the training data was split according to the BIOWIDE stratification.
Variable importance for this boosted regression tree model.
## var rel.inf
## dtm_10m dtm_10m 9.436428
## Sand_utm32_10m Sand_utm32_10m 9.410692
## treetype_bjer_dec treetype_bjer_dec 7.586392
## Clay_utm32_10m Clay_utm32_10m 6.717277
## Soc_utm32_10m Soc_utm32_10m 6.288340
## ns_groundwater_summer_utm32_10m ns_groundwater_summer_utm32_10m 5.873385
## dtm_10m_sd_110m dtm_10m_sd_110m 5.429778
## amplitude_sd amplitude_sd 5.258751
## canopy_height canopy_height 5.022070
## vegetation_density vegetation_density 4.780821
## canopy_height_sd_110m canopy_height_sd_110m 4.767433
## ns_groundwater_summer_sd_110m ns_groundwater_summer_sd_110m 4.674164
## solar_radiation solar_radiation 4.625719
## vegetation_density_sd_110m vegetation_density_sd_110m 4.329235
## normalized_z_sd normalized_z_sd 4.155538
## foliage_height_diversity foliage_height_diversity 3.908227
## amplitude_mean amplitude_mean 3.760337
## slope slope 2.515989
## openness_difference openness_difference 1.459423
Performance map based on the independent validation data:
Performance table based on the independent validation data:
Measure | Overall | Bornholm | Fune_Lolland | Nordjlland | Oestjylland | Sjaelland | Vestjylland |
---|---|---|---|---|---|---|---|
Accuracy | 0.81 | 0.81 | 0.78 | 0.90 | 0.80 | 0.74 | 0.89 |
Error | 0.19 | 0.19 | 0.22 | 0.10 | 0.20 | 0.26 | 0.11 |
Sensitivity (True Positive Rate) | 0.83 | 0.88 | 0.85 | 0.94 | 0.84 | 0.78 | 0.71 |
Specificity (True Negative Rate) | 0.78 | 0.70 | 0.63 | 0.86 | 0.76 | 0.70 | 0.96 |
Fall-out (False Positive Rate) | 0.22 | 0.30 | 0.37 | 0.14 | 0.24 | 0.30 | 0.04 |
Positive predictive value (User Accuracy) | 0.80 | 0.84 | 0.83 | 0.88 | 0.80 | 0.73 | 0.87 |
Performance table based on the dependent training data:
Measure | Overall | Bornholm | Fune_Lolland | Nordjlland | Oestjylland | Sjaelland | Vestjylland |
---|---|---|---|---|---|---|---|
Accuracy | 0.99 | 1.00 | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 |
Error | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 |
Sensitivity (True Positive Rate) | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.97 |
Specificity (True Negative Rate) | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 0.99 | 1.00 |
Fall-out (False Positive Rate) | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 |
Positive predictive value (User Accuracy) | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 |
Performance map based on the independent validation data:
Performance table based on the independent validation data:
Measure | Overall | Region 1 | Region 2 | Region 3 |
---|---|---|---|---|
Accuracy | 0.81 | 0.78 | 0.79 | 0.88 |
Error | 0.19 | 0.22 | 0.21 | 0.12 |
Sensitivity (True Positive Rate) | 0.83 | 0.84 | 0.85 | 0.76 |
Specificity (True Negative Rate) | 0.78 | 0.69 | 0.73 | 0.92 |
Fall-out (False Positive Rate) | 0.22 | 0.31 | 0.27 | 0.08 |
Positive predictive value (User Accuracy) | 0.80 | 0.79 | 0.81 | 0.80 |
Performance table based on the dependent training data:
Measure | Overall | Region 1 | Region 2 | Region 3 |
---|---|---|---|---|
Accuracy | 0.99 | 0.99 | 0.99 | 0.99 |
Error | 0.01 | 0.01 | 0.01 | 0.01 |
Sensitivity (True Positive Rate) | 0.99 | 0.99 | 0.99 | 0.98 |
Specificity (True Negative Rate) | 0.99 | 0.99 | 0.99 | 1.00 |
Fall-out (False Positive Rate) | 0.01 | 0.01 | 0.01 | 0.00 |
Positive predictive value (User Accuracy) | 0.99 | 0.99 | 1.00 | 1.00 |
Performance table based on the independent validation data:
Measure | Overall | Broadleaf | Coniferous |
---|---|---|---|
Accuracy | 0.81 | 0.78 | 0.88 |
Error | 0.19 | 0.22 | 0.12 |
Sensitivity (True Positive Rate) | 0.83 | 0.86 | 0.63 |
Specificity (True Negative Rate) | 0.78 | 0.68 | 0.95 |
Fall-out (False Positive Rate) | 0.22 | 0.32 | 0.05 |
Positive predictive value (User Accuracy) | 0.80 | 0.80 | 0.80 |
Performance table based on the dependent training data:
Measure | Overall | Broadleaf | Coniferous |
---|---|---|---|
Accuracy | 0.99 | 0.99 | 0.99 |
Error | 0.01 | 0.01 | 0.01 |
Sensitivity (True Positive Rate) | 0.99 | 1.00 | 0.97 |
Specificity (True Negative Rate) | 0.99 | 0.99 | 1.00 |
Fall-out (False Positive Rate) | 0.01 | 0.01 | 0.00 |
Positive predictive value (User Accuracy) | 0.99 | 0.99 | 0.99 |
Variable importance for this boosted regression tree model.
## var rel.inf
## Sand_utm32_10m Sand_utm32_10m 9.292837
## dtm_10m dtm_10m 9.063782
## treetype_bjer_dec treetype_bjer_dec 7.359120
## Clay_utm32_10m Clay_utm32_10m 6.703277
## ns_groundwater_summer_utm32_10m ns_groundwater_summer_utm32_10m 6.048256
## Soc_utm32_10m Soc_utm32_10m 6.036391
## amplitude_sd amplitude_sd 5.627812
## dtm_10m_sd_110m dtm_10m_sd_110m 5.429703
## canopy_height canopy_height 5.251818
## canopy_height_sd_110m canopy_height_sd_110m 4.772935
## ns_groundwater_summer_sd_110m ns_groundwater_summer_sd_110m 4.552738
## vegetation_density_sd_110m vegetation_density_sd_110m 4.520161
## solar_radiation solar_radiation 4.495919
## vegetation_density vegetation_density 4.397915
## normalized_z_sd normalized_z_sd 4.318571
## foliage_height_diversity foliage_height_diversity 4.116388
## amplitude_mean amplitude_mean 3.919426
## slope slope 2.403913
## openness_difference openness_difference 1.689039
Performance map based on the independent validation data:
Performance table based on the independent validation data:
Measure | Overall | Bornholm | Fune_Lolland | Nordjlland | Oestjylland | Sjaelland | Vestjylland |
---|---|---|---|---|---|---|---|
Accuracy | 0.81 | 0.82 | 0.81 | 0.89 | 0.80 | 0.76 | 0.89 |
Error | 0.19 | 0.18 | 0.19 | 0.11 | 0.20 | 0.24 | 0.11 |
Sensitivity (True Positive Rate) | 0.84 | 0.86 | 0.90 | 0.93 | 0.85 | 0.79 | 0.69 |
Specificity (True Negative Rate) | 0.79 | 0.75 | 0.63 | 0.86 | 0.75 | 0.72 | 0.95 |
Fall-out (False Positive Rate) | 0.21 | 0.25 | 0.37 | 0.14 | 0.25 | 0.28 | 0.05 |
Positive predictive value (User Accuracy) | 0.80 | 0.86 | 0.83 | 0.88 | 0.78 | 0.75 | 0.84 |
Performance table based on the dependent training data:
Measure | Overall | Bornholm | Fune_Lolland | Nordjlland | Oestjylland | Sjaelland | Vestjylland |
---|---|---|---|---|---|---|---|
Accuracy | 1 | 1 | 1 | 1 | 1 | 0.99 | 0.99 |
Error | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.01 |
Sensitivity (True Positive Rate) | 1 | 1 | 1 | 1 | 1 | 0.99 | 0.98 |
Specificity (True Negative Rate) | 1 | 1 | 1 | 1 | 1 | 0.99 | 1.00 |
Fall-out (False Positive Rate) | 0 | 0 | 0 | 0 | 0 | 0.01 | 0.00 |
Positive predictive value (User Accuracy) | 1 | 1 | 1 | 1 | 1 | 0.99 | 1.00 |
Performance map based on the independent validation data:
Performance table based on the independent validation data:
Measure | Overall | Region 1 | Region 2 | Region 3 |
---|---|---|---|---|
Accuracy | 0.81 | 0.79 | 0.80 | 0.87 |
Error | 0.19 | 0.21 | 0.20 | 0.13 |
Sensitivity (True Positive Rate) | 0.84 | 0.84 | 0.86 | 0.77 |
Specificity (True Negative Rate) | 0.79 | 0.70 | 0.72 | 0.92 |
Fall-out (False Positive Rate) | 0.21 | 0.30 | 0.28 | 0.08 |
Positive predictive value (User Accuracy) | 0.80 | 0.81 | 0.80 | 0.78 |
Performance table based on the dependent training data:
Measure | Overall | Region 1 | Region 2 | Region 3 |
---|---|---|---|---|
Accuracy | 1 | 1.00 | 1 | 1.00 |
Error | 0 | 0.00 | 0 | 0.00 |
Sensitivity (True Positive Rate) | 1 | 1.00 | 1 | 0.99 |
Specificity (True Negative Rate) | 1 | 0.99 | 1 | 1.00 |
Fall-out (False Positive Rate) | 0 | 0.01 | 0 | 0.00 |
Positive predictive value (User Accuracy) | 1 | 1.00 | 1 | 1.00 |
Performance table based on the independent validation data:
Measure | Overall | Broadleaf | Coniferous |
---|---|---|---|
Accuracy | 0.81 | 0.95 | 0.97 |
Error | 0.19 | 0.05 | 0.03 |
Sensitivity (True Positive Rate) | 0.84 | 0.97 | 0.90 |
Specificity (True Negative Rate) | 0.79 | 0.93 | 0.99 |
Fall-out (False Positive Rate) | 0.21 | 0.07 | 0.01 |
Positive predictive value (User Accuracy) | 0.80 | 0.96 | 0.96 |
Performance table based on the dependent training data:
Measure | Overall | Broadleaf | Coniferous |
---|---|---|---|
Accuracy | 1 | 0.95 | 0.97 |
Error | 0 | 0.05 | 0.03 |
Sensitivity (True Positive Rate) | 1 | 0.97 | 0.90 |
Specificity (True Negative Rate) | 1 | 0.93 | 0.99 |
Fall-out (False Positive Rate) | 0 | 0.07 | 0.01 |
Positive predictive value (User Accuracy) | 1 | 0.95 | 0.96 |