Models trained using BIOWIDE stratification

For these models the training data was split according to the BIOWIDE stratification.

Variable importance

Variable importance for this random forest model, determined using the “permutation” option in ranger.

Overall
Sand_utm32_10m 100.000000
treetype_bjer_dec 82.402128
dtm_10m 77.419004
Clay_utm32_10m 70.345552
dtm_10m_sd_110m 57.163281
ns_groundwater_summer_utm32_10m 56.787379
Soc_utm32_10m 38.041657
amplitude_sd 37.983167
canopy_height 36.898430
normalized_z_sd 35.367769
openness_difference 30.409109
slope 20.910563
ns_groundwater_summer_sd_110m 16.561303
vegetation_density 15.630589
amplitude_mean 13.397601
solar_radiation 12.448666
canopy_height_sd_110m 4.933190
vegetation_density_sd_110m 3.406289
foliage_height_diversity 0.000000

Performance in BIOWIDE regions:

Performance map based on the independent validation data:

Performance table based on the independent validation data:

Measure Overall Bornholm Fune_Lolland Nordjlland Oestjylland Sjaelland Vestjylland
Accuracy 0.82 0.82 0.81 0.91 0.82 0.76 0.90
Error 0.18 0.18 0.19 0.09 0.18 0.24 0.10
Sensitivity (True Positive Rate) 0.87 0.90 0.92 0.95 0.89 0.83 0.71
Specificity (True Negative Rate) 0.78 0.69 0.60 0.86 0.74 0.69 0.96
Fall-out (False Positive Rate) 0.22 0.31 0.40 0.14 0.26 0.31 0.04
Positive predictive value (User Accuracy) 0.80 0.83 0.83 0.89 0.80 0.74 0.88

Performance table based on the dependent training data:

Measure Overall Bornholm Fune_Lolland Nordjlland Oestjylland Sjaelland Vestjylland
Accuracy 1 1 1 1 1 1 1
Error 0 0 0 0 0 0 0
Sensitivity (True Positive Rate) 1 1 1 1 1 1 1
Specificity (True Negative Rate) 1 1 1 1 1 1 1
Fall-out (False Positive Rate) 0 0 0 0 0 0 0
Positive predictive value (User Accuracy) 1 1 1 1 1 1 1

Performance in Derek’s regions:

Performance map based on the independent validation data:

Performance table based on the independent validation data:

Measure Overall Region 1 Region 2 Region 3
Accuracy 0.82 0.80 0.81 0.88
Error 0.18 0.20 0.19 0.12
Sensitivity (True Positive Rate) 0.87 0.89 0.88 0.78
Specificity (True Negative Rate) 0.78 0.68 0.71 0.92
Fall-out (False Positive Rate) 0.22 0.32 0.29 0.08
Positive predictive value (User Accuracy) 0.80 0.80 0.80 0.81

Performance table based on the dependent training data:

Measure Overall Region 1 Region 2 Region 3
Accuracy 1 1 1 1
Error 0 0 0 0
Sensitivity (True Positive Rate) 1 1 1 1
Specificity (True Negative Rate) 1 1 1 1
Fall-out (False Positive Rate) 0 0 0 0
Positive predictive value (User Accuracy) 1 1 1 1

Performance by forest type (boradleaf vs. coniferous)

Performance table based on the independent validation data:

Measure Overall Broadleaf Coniferous
Accuracy 0.82 0.81 0.87
Error 0.18 0.19 0.13
Sensitivity (True Positive Rate) 0.87 0.91 0.57
Specificity (True Negative Rate) 0.78 0.66 0.96
Fall-out (False Positive Rate) 0.22 0.34 0.04
Positive predictive value (User Accuracy) 0.80 0.80 0.83

Performance table based on the dependent training data:

Measure Overall Broadleaf Coniferous
Accuracy 1 1 1
Error 0 0 0
Sensitivity (True Positive Rate) 1 1 1
Specificity (True Negative Rate) 1 1 1
Fall-out (False Positive Rate) 0 0 0
Positive predictive value (User Accuracy) 1 1 1

Models trained using Derek’s stratification

Variable importance

Variable importance for this random forest model, determined using the “permutation” option in ranger.

Overall
Sand_utm32_10m 100.000000
treetype_bjer_dec 81.570818
dtm_10m 73.198738
Clay_utm32_10m 69.218368
dtm_10m_sd_110m 58.622528
ns_groundwater_summer_utm32_10m 56.875166
amplitude_sd 39.117492
Soc_utm32_10m 37.597694
canopy_height 36.925847
normalized_z_sd 34.734356
openness_difference 30.391050
slope 19.174338
ns_groundwater_summer_sd_110m 16.546973
amplitude_mean 14.016066
vegetation_density 13.985474
solar_radiation 11.460056
canopy_height_sd_110m 4.549356
vegetation_density_sd_110m 3.270389
foliage_height_diversity 0.000000

Performance in BIOWIDE regions:

Performance map based on the independent validation data:

Performance table based on the independent validation data:

Measure Overall Bornholm Fune_Lolland Nordjlland Oestjylland Sjaelland Vestjylland
Accuracy 0.82 0.83 0.83 0.91 0.81 0.76 0.90
Error 0.18 0.17 0.17 0.09 0.19 0.24 0.10
Sensitivity (True Positive Rate) 0.87 0.90 0.92 0.95 0.89 0.83 0.71
Specificity (True Negative Rate) 0.77 0.70 0.64 0.85 0.71 0.70 0.96
Fall-out (False Positive Rate) 0.23 0.30 0.36 0.15 0.29 0.30 0.04
Positive predictive value (User Accuracy) 0.79 0.84 0.84 0.88 0.77 0.75 0.86

Performance table based on the dependent training data:

Measure Overall Bornholm Fune_Lolland Nordjlland Oestjylland Sjaelland Vestjylland
Accuracy 1 1 1 1 1 1 1
Error 0 0 0 0 0 0 0
Sensitivity (True Positive Rate) 1 1 1 1 1 1 1
Specificity (True Negative Rate) 1 1 1 1 1 1 1
Fall-out (False Positive Rate) 0 0 0 0 0 0 0
Positive predictive value (User Accuracy) 1 1 1 1 1 1 1

Perfromance in Derek’s regions:

Performance map based on the independent validation data:

Performance table based on the independent validation data:

Measure Overall Region 1 Region 2 Region 3
Accuracy 0.82 0.80 0.80 0.88
Error 0.18 0.20 0.20 0.12
Sensitivity (True Positive Rate) 0.87 0.87 0.90 0.79
Specificity (True Negative Rate) 0.77 0.69 0.68 0.92
Fall-out (False Positive Rate) 0.23 0.31 0.32 0.08
Positive predictive value (User Accuracy) 0.79 0.80 0.78 0.78

Performance table based on the dependent training data:

Measure Overall Region 1 Region 2 Region 3
Accuracy 1 1 1 1
Error 0 0 0 0
Sensitivity (True Positive Rate) 1 1 1 1
Specificity (True Negative Rate) 1 1 1 1
Fall-out (False Positive Rate) 0 0 0 0
Positive predictive value (User Accuracy) 1 1 1 1

Performance by forest type (boradleaf vs. coniferous)

Performance table based on the independent validation data:

Measure Overall Broadleaf Coniferous
Accuracy 0.82 0.80 0.88
Error 0.18 0.20 0.12
Sensitivity (True Positive Rate) 0.87 0.91 0.60
Specificity (True Negative Rate) 0.77 0.65 0.96
Fall-out (False Positive Rate) 0.23 0.35 0.04
Positive predictive value (User Accuracy) 0.79 0.79 0.80

Performance table based on the dependent training data:

Measure Overall Broadleaf Coniferous
Accuracy 1 1 1
Error 0 0 0
Sensitivity (True Positive Rate) 1 1 1
Specificity (True Negative Rate) 1 1 1
Fall-out (False Positive Rate) 0 0 0
Positive predictive value (User Accuracy) 1 1 1